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1 The Problem 

Two decades ago researchers proposed a simplified model 
of the visuo-motor control systems used by flies (Musca 
domestica for instance) to fixate contrasted targets (Re- 
ichardt and Wenking. 1969; Reichardt and Poggio 1975. 
1976,1980; Poggio and Reichardt, 1973; Geiger and Pog- 
gio, 1975; Wehrhahn and Poggio, 1976) and to chase 
other flies (Land and Collett, 1974; Poggio et al., 1977; 
Buelthoff et al., 1979: Reichardt and Poggio, 1980; Pog- 
gio and Reichardt, 1981; Wehrhahn et al., 1982; Collett 
and Land, 1975; Collett and Land, 1978). The models 
describe the motion of a fly as it is tracking a visual tar- 
get. The basic equation of motion is somewhat similar 
to a point mass in a nonlinear force field. The models 
were used to simulate free-flight behavior; the simula- 
tions were compared with actual flight data recorded 
through high-speed 3D movies. In the simulations of 
chases, the trajectory of a leading fly was given to the 
model which then used that data to predict the trajec- 
tory of the chasing fly. Simulations were also made of a 
fly approaching a stationary target (a landing situation). 

Simulations were never made, however, of two or more 
flies interacting with each other using the model of the 
visuo-motor control system for tracking. The purpose of 
this paper is to conduct such simulations. In particular, 
we are especially interested in finding out whether the 
interaction of two or more model flies can lead to tra- 
jectories showing indications of chaotic behavior, from 
equations governing the motion are fully deterministic 
and rather simple. In addition, this project may be a 
first step in studying the complex behavior arising from 
the interaction of many flies in a swarm, each one de- 
scribed by a simple model. 

2 Background 

Male and female flies fixate - that is fly towards - small 
contrasted patterns and track moving objects. A sim- 
ple, mathematical model developed by Reichardt and 
coworkers (see for instance Reichardt and Poggio, 1976; 
Reichardt and Poggio, 1980) were based on so-called 
closed-loop experiments in which a flying fly was fixed to 
a torque compensator, capable of measuring its torque 
about the vertical axis. The torque was controlling the 
motion of the environment around the fly by a real-time 
electronic simulation of the flight dynamics. 

In this paper we restrict ourselves to the an idealized 
situation with a restricted number of degrees of freedom. 
In particular, we assume that the flight trajectories are 
on the horizontal plane. The models can be extended 
to the 3D situation (see Reichardt and Poggio, 1981; 
Wehrhahn et al., 1982; Buelthoff, H. et al., 1979). Figure 
1 shows the equivalent free-flight situation, ip is the error 
angle between the direction of flight aj and the direction 
of the target ap, both relative to the "zero" direction ; 
it represents the position of the image of the target on 
the eye of the fly under the assumption - not completely 
correct - that the fly's head is always looking straight 
ahead in the direction of flight. The flight dynamics, 
neglecting translational effects, is approximated by 

kaf = F(t) (1) 

where F(t) is the torque generated by the fly and d/ 
is the angular velocity of the fly. The torque F(t) de- 
pends on the visual input; it was found (see Reichardt 
and Poggio, 1976) that it can be approximated, under 
situations of tracking and chasing, as a function of the 
angular error (see Fig.l). The angular velocity also con- 
tributes but in a small way: we will neglect here the 
angular velocity term (see Reichardt and Poggio , 1980). 
We approximate F(t) as 

F(t) = D(V) + N(t) (2) 

D(v) has been described as either a linear function of 
the angular error over the domain (—7r, IT) (see Fig. 2a) 
or as a nonlinear function of it (see Fig. 2b), depending 
on whether the fly is male or female and on whether it 
is engaged in free-flight chasing or in simple fixation. In 
this paper we will examine both forms of D{ij>) as two 
different, but plausible control systems. N(t) is a so- 
called zero-mean, gaussian process characterized by its 
autocorrelation function. It can be thought of as low- 
pass white noise. Since in most of our simulations we 
did not use the noise term N(t), unless otherwise spec- 
ified we will set N(t) = 0. Note that N(t) reflects our 
ignorance (in the model) of the fly's will and intentions. 
The model, which describes the smooth tracking sys- 
tem and neglects a possible "saccadic" system (see Land, 
1977 and Poggio et al, 1977), is of course an oversimpli- 
fication. Heisenberg and Wolf (1990) among others have 
described evidence pointing to necessary extensions of it. 
\\ e also assume that flies move at constant translational 
velocity v; in some cases we will make the assumption 
that the velocity v is controlled by the distance to the 
target and refer to this control choice with v(p). The 
specific forms of D(ip) and of v(p) are in Figures 2a, 2b, 
and 2c. 

3    The Model 
We model a fly in most of our simulations by using the 
following equations of motion 

leaf = F(t) (3) 

F(t) = D(rp(t - e) (4) 

where is the delay in the fly's reaction (about 30 msec); 
the translational equations, which account for the change 
in angle due to the translation of the fly relative to the 
target, are 

x = v(p)sinaf (5) 

y =z v(p)cosaf (6) 

Instead of this set of differential equations we sim- 
ulate on the computer the corresponding set of differ- 
ence equations by discretizing the differential equations 
at time intervals of At. Notice that a change in At in 
our difference equations corresponds to scaling appropri- 
ately parameters such as k and v. We neglect the delay 



(the "equivalent" delay in our difference equation model 
isAi). 

4    The Simulations 

4.1 One fly, one fixed target 

The first simulated experiments consist of one fly fixating 
a single fixed target. We first run the simulation using 
Di(v) and a constant velocity (see Fig. 3). The (simple) 
theory (see Reichardt and Poggio, 1980) predicts a peri- 
odic attractor in which the fly orbits the target in a fixed 
circular path. The fly cannot land because the velocity 
is constant. It keeps the target at an error angle of TT/2. 
The orbit is stable because the slope of Z?;(V0 around 
TT/2 is positive (see Fig. 2a) . The result of the simula- 
tion confirms that prediction. When we use v(p) of Fig. 
2c to control the fly's velocity and the same D\{il>). the 
fly is able to land, as expected. 

Using Dn (V>) and a constant velocity we observe a lo- 
cally unstable situation, since in Dn(ip) around 7r/2 the 
slope is negative (see Fig. 4). Figure 4 also represents 
the first observation of a "flower-like" periodic attrac- 
tor. This attractor shows up again in later simulations 
with multiple flies. The fly makes "bowtie-like" loops 
by fixating the target, passing through it, and then fix- 
ating it again and so on. It makes these loops in one 
direction for a certain amount of time, depending on the 
initial conditions, then it gets stuck in one loop appar- 
ently ad infinitum. The attractor is unstable and can be 
destroyed by small amounts of noise. 

If we use v(p) to control the fly's velocity and again 
D„(v) for the torque the results are similar to those 
using Dt(p) as the torque function. As expected, the 
fly's behavior for \ip\ < T/6 is virtually the same for both 
D„(v) and Di(ip) since the slope of the two functions is 
similar in that range. 

4.2 One fly, one moving target 

In the next set of experiments we simulate a fly tracking 
a moving object: therefore in all of the following simula- 
tions the velocity is controlled by v(p) with the speed of 
the target as the lower bound. Whether we use linear or 
nonlinear £>(V0 the observed behavior are qualitatively 
similar. Fig. 5 is a specific example showing tracking of 
a target moving with random direction. 

4.3 Two flies chasing each other 

At this point we begin to simulate the cases that have 
not appeared previously in the literature. In the next 
two simulations the two flies have the same constant ve- 
locity and are both tracking each other. When we use 
Di(p) to control the torque in both flies we observe two 
attractors by randomly changing the initial positions of 
the two flies. The first attractor, and far more frequent 
one (see Fig. 6), consists of the two flies always set- 
tling into the same circular orbit, one chasing the other, 
and keeping each other at a ip = 7r/2 error angle. This 
behavior is similar to the single fly orbiting around a tar- 
get. It is a stable attractor because in Di(ip) the slope 
around TT/2 positive. This attractor - like the single fly, 
single target attractor - is not easily destroyed by small 

amounts of noise. The second, far more rare attractor 
(see Fig. 7) exists only with certain restricted initial 
conditions (i.e. both flies must initially face in parallel 
directions and be positioned on the same line perpendic- 
ular to their direction of flight). The flies begin to weave 
around each other while making their loops progressively 
smaller and smaller ad infinitum until they seem to be 
travelling along the same straight line. 

However, when the fly's torque is controlled by Dn(ip) 
the resulting attractor is very unstable (see Fig. 8). 
Small amounts of noise will significantly alter the fly's 
behavior. This attractor closely resembles the single fly 
fixed target attractor seen in Fig. 4. After forming the 
typical "flower-like" pattern the flies settle into a pe- 
riodic attractor. Instead of progressively rotating each 
new loop slightly from the last as they do while creat- 
ing the "flower-like" pattern, the flies remain in the same 
loop. Once trapped in the periodic attractor, the flies fix- 
ate each other, pass through each other, and fixate each 
other again while retracing the same path ad infinitum. 
The time between the beginning of the simulation and 
the beginning of the periodic attractor (roughly propor- 
tional to number of loops made before "getting stuck") 
depends on the initial conditions. 

4.4    More than two flies chasing each other 
In simulations in which a fly has more than one target 
we assume, based on experimental data from Reichardt 
and Poggio (1976), that the fly's total torque is approxi- 
mated by the sum of the torques generated by each target 
individually. In formula: 

Ftotal = D(rP1) + D(^2) + --- + N(t) (7) 

where ipi, V>2, • • • are the error angles of the fly relative to 
each target. We also assume that the absolute value of 
the torque produced by the fly cannot exceed an upper 
limit. For this reason we introduce a saturation nonlin- 
earity operating on Ftotai 

F,at - <r(Ftotai) 

where a is the function defined here as 

x  if |x| < 4 
±4  otherwise. a(x) = | 

(8) 

(9) 

Notice that this means that nonlinear saturation 
never occurs with less than 4 flies if the nonlinear Dn(%j>) 
is used. 

4.4.1    Three flies chasing each other 
Three flies chasing each other show different types of 

behavior depending on their initial conditions, At, and 
on the values of their parameters. 

Using the "linear" control equation Z?i(V0 (with the 
nonlinear saturation) we observe several different types 
of behavior depending on At. With small At values 
(.06 > At > .003) we observe several different periodic 
and apparently chaotic attractors. One of these attrac- 
tors simply consists of the three flies merging their flight 
paths and flying off in a straight line (this occurs around 
At = .06). The other two are variations of the gen- 
eral "weaving" behavior (see Fig. 9), one being almost 
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chaotic (it shows almost periodic behavior over a very 
long time scale), the other periodic. Using very small 
At's (At < .003) we observe only the apparently chaotic 
"weaving" pattern of Fig. 10. With large and moderate 
values of At (At > .06) we observe an attractor in which 
the three flies, after an initial transient, apparently ran- 
dom flight pattern, suddenly fly apart in straight lines 
at 2/37T from each other. This phenomenon occurs be- 
cause each fly puts itself in a position such that the error 
angles t/> for the other two flies are equal and opposite, 
producing equal and opposite torques, which lead to this 
equilibrium situation. As a general, but by no means 
unequivocal rule, the "120° equilibrium" phenomenon 
occurs at higher At's and variations of the "weaving" 
behavior occur at lower At's. 

It is interesting to note that making At greater or 
smaller is equivalent to making the flies' torque F and 
translational velocity v greater and smaller respectively 
as we alluded to earlier. With a large At (At > .2) and 
the D„(ip) control system complete chaos reigns. This 
behavior is due to the fact that a large At is equiva- 
lent to a large torque F which would cause the fly to 
over-rotate leading to chaos. As one reduces At more 
and more (.1 > At > .07) the flight pattern apparently 
remains chaotic but all three flies stick to each other 
and take the same path. Their path becomes smoother 
and less rough than with large At's yet it remains rid- 
dled with chaotic loops. As At is lessened even further 
(.07 > At > .05) the flies split up their flight path (see 
Fig. 11). One fly goes on its own while the other to re- 
main attached together. These two groups (of 2 flies and 
1 fly) continue to fly towards each other, pass through 
each other, and then fly towards each other again ad 
infinitum. In doing so they form loops but no appar- 
ent pattern. Their behavior apparently remains chaotic. 
When At is very small (At < .05) then the flies remain 
grouped as before and they loop in the same way, how- 
ever patterns begin to surface in their behavior. Flight 
paths begin to resemble the "bow-tie loops" discussed 
earlier, and the error angle ip between two flies begins to 
follow a quasi periodic pattern. The behavior, however, 
is not completely periodic. The repetition of patterns is 
not as exact as in the simulation involving only two flies. 
Chaos still may be present. For larger At there is also 
another more rare attractor in which all three flies follow 
the same straight-line path. 

4.4.2    Two flies chasing, one fleeing 

In the next set of simulations, we used three model 
flies, two of which chased (or were attracted by) the other 
flies, and one of which fled from (or was repelled by) the 
other flies. The behavior, like in the previous simula- 
tions, depends on At and on which of the two control 
equations was used. 

Using the linear function Di(v), at large At (At > .2) 
we observed several different types of apparently chaotic 
attractors. In some cases the fleeing fly may fly off in a 
straight line with the two chasers following in a chaotic 
way. In other cases a "V" shape was formed by the paths 
of the two chaser flies while the fleeing fly is chaotically 
in the middle of the "V" (similar to "120° equilibrium"). 

In still other cases the flies simply follow apparently ran- 
dom "zig-zag" paths. But as At was decreased (At < .1) 
the flies always displayed the same type of behavior (see 
Fig. 12). The two chaser flies weave around each other, 
making "U" shaped loops in a curved path, and gradu- 
ally increasing the size of the loops. At the same time 
the fleeing fly follows a curved path on the inside of the 
curved path of the two chaser flies. This behavior occurs 
in small to very small At's and seems to be the only be- 
havior at these At's (observed as low as At — .0005). 

Using the non-linear function D„(i(/), we also observed 
that as dt decreases just one type of behavior seems to 
take over. For large At (At > .5) we observed only 
apparent chaos. But as we decreased At (.5 > At > 
.1) the behavior became less and less chaotic until the 
fleeing fly flew off in a straight line with the two chasers 
following immediately behind it in the same straight line. 
This behavior occurred in small to very small At's and 
seems to be the only behavior at these At's (observed at 
as low At as At = .0005). 

4.5    A swarm of flies 
10 flies with the nonlinear Dn(ip) (and saturation) show 
a periodic behavior for At < 0.03. With At > 0.03 there 
seems to be onset of chaos (see Fig. 13). The behavior 
of the swarm starts to resemble the rapid imploding and 
exploding motions of actual swarms of mosquitos. We 
notice a global stability of the swarm itself which is glued 
together and moves relatively slowly as a whole, at a 
much slower rate than the individual flies. The glue that 
holds the swarm together is the reciprocal attraction that 
fly exert on each other. There is no leader though all the 
flies follow one of them for some interval of time before 
the onset of a phase of chaotic flight. The behaviour 
seems to be relatively independent of the number of flies. 

5     Discussion 

Our simulations of artificial flies suggest that the inter- 
action of very simple control systems may account for 
some of the complex behavior observed in real swarms 
of flies or mosquitoes. The model of the fly which we 
use is a vast oversimplification. Therefore in the follow- 
ing we discuss some limitations of the model and some 
of the most important (possible) extensions. 

5.1    Limitations of the model 
The original Reichardt and Poggio model is a simplifi- 
cation of the tracking of real-life flies. It does not take 
into account the motion of the individual fly's head rela- 
tive to its body (Land, 1973; ; Geiger and Poggio, 1977; 
Wagner, 1986). It does not model the apparent ability 
of the fly to control in some circumstances the "noise" 
term, N(t) (Heisenberg k Wolf, 1990). It also concen- 
trates on the smooth pursuit control system. In addition 
our simulation uses difference equations in the place of 
differential equations with delay. Furthermore our sim- 
ulated flies are simply points on a screen and can pass 
through each other, unlike real flies. Finally, we make 
the assumption that all flies can see all the other flies 
regardless of the distance between them (clearly unreal- 
istic). In fact one may assume that a fly becomes visible 



to another fly under normal conditions only for distances 
below 50cm or so (Collett k Land, 1978). We should also 
notice that the systems involved in tracking and chasing 
are almost certainly different from each other with re- 
spect to the underlying neural substrate; they are also 
different in male and female flies (Wehrhahn, 1978; Pog- 
gioet al., 1977). 

5.2    Extensions of the model 

There are several obvious extensions of the model. We 
have mentioned earlier examples such as taking into ac- 
count the visibility of flies as a function of distance and 
of occlusions (by other flies). Clearly an extension to 
three dimensions would be desirable. A full model of the 
dynamics of flight - including lift, roll, yaw and pitch - 
is relatively challenging, especially if one would like to 
take into account the degrees of freedom associated with 
the movements of the head relative to the body. More 
interesting is the idea of modeling different simple behav- 
iors in the individual flies. It is likely that a fly has at 
very least a small repertoire of routines or behaviors that 
can be switched on in different situations: the landing 
reaction, the chasing behavior and the tracking behav- 
ior are such examples. From our simulations it seems 
that the swarm behavior of a group of flies may be an 
emergent property of a simple control system for track- 
ing. It is quite possible however that the parameters 
of the control system active during the swarm behavior 
may be different from the control system active during 
chasing and that they may correspond to different neu- 
ral structures. Notice that the slope of D(^) is much 
greater in male flies than in female flies and that only 
male flies "swarm". Our simulations pose the question 
of whether the swarm behaviour is a side effect of an 
existing tracking system. We believe that a positive an- 
swer to the question is unlikely. We believe, however, 
that the swarm behaviour may depend on a relatively 
simple tracking system similar to - even if separate from 
- the chasing system described in this paper. The alter- 
native hypothesis is of course that the swarm behaviour 
depends on a completely different control system. 

The most interesting aspect of our simulations is to 
show that the interaction of a few very simple control 
systems as we described for flies can generate complex 
behavior. Under some conditions this behavior appears 
to be chaotic. We did not test whether the solution of 
our (difference!) equations has all the characteristics of 
deterministic chaos but at least in some of our simula- 
tions this is quite likely and not too surprising. Even 
more interesting is the observation that the chaotic be- 
havior of groups of flies has a qualitative similarity with 
the swarm behavior sometimes observed in mosquitos or 
similar flies. It is instructive how many different behav- 
iors a few of these simple equations can generate: the fig- 
ures show a few of them but do not exhaust the number 
of interesting attractors we have observed. The figures 
do not do justice to the richness of the simulations which 
should be observed dynamically to appreciate them fully. 
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Figure 1. The angles used in our model and p , the distance of the fly to the target. ap is the direction of the target 
relative to the vertical: a; is the direction of flight relative to the vertical; ip = ap - a; is the error angle. 



(a) (b) 

(c) 

Figure 2a. The linear Dt(ip) function describing how the torque generated by the fly depends on the error angle 
This function seems to describe free-flight chasing by male flies Musca domestica (see Reichardt & Poggio, 1981). 

The ordinate is torque (dyn cm); the abscissa is degrees of visual angle. 2b) The nonlinear Dn(ip) function 
describing how the torque generated by the fly depends on the error angle . This function seems to describe 

trackin«- in female flies Musca domestica (see Poggio k Reichardt, 1981). The ordinate is torque (dyn cm); the 
abscissa is degrees of visual angle. 2c) The function v(p) describing how the forward velocity is controlled 

depending on the distance to the target in chasing situations (see Poggio & Reichardt , 1981). 

Figure 3  The trajectory of a simulated fly tracking a stationary target. In our difference equation we used the 
linear Dt(ip), v = 100 and At = O.Olsec. The simulation shows a periodic attractor, as predicted by the (simple) 

theory. The same attractor is found over a wide range of At. 
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Figure 4. The trajectory of a simulated fly tracking a stationary target with nonlinear Dn(ip), and At = O.Olsec. 
The velocity is constant. After a transient bow-tie trajectory the model fly settles in one of the loops (the smallest 
one in the figure) with a periodic behavior (see inset). The same behavior is observed for different dt (from 0.1 to 
0.001). Here, as in several of the following figures, the inset above the figure shows the error angle as a function of 

time. The ordinate is from —7r to n , the abscissa starts at time 0. 
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Figure 5. A typical chasing behavior of a simulated fly tracking a moving target. The target moves at constant 
speed with random directions. The same basic behavior is observed with nonlinear and linear JD(V'), and a wide 
range of At. The velocity decreases with the distance from the target according to the function v(p). The inset 

above the figure shows the error angle as a function of time. The ordinate is from —ir to w , the abscissa starts at 
time 0. 



Figure 6. The behavior of two flies chasing each other. We use the linear A(V0- The velocity is constant for both 
flies. In this simulation At = .001 but the same behavior is observed for a broad range of At. 

Figure 7. The second, far more rare attractor for the case of two flies chasing each other with a linear D,(rp) exists 
only with certain restricted initial conditions (both flies must initially face in parallel directions and be positioned 
on the same line perpendicular to their direction of flight). In this simulation At = .001 but the same behavior is 

observed for a broad range of At. The inset above the figure shows the error angle as a function of time. 
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Figure 8. The behavior of two flies chasing each other. Both flies use now the nonlinear D„(ip). The velocity is 
constant for both flies. In this simulation At = .001 but the same behavior is observed for a broad range of dt. As 

usual, the upper inset shows the error angle of one fly relative to the other plotted as a function of time. 

Figure 9. The behavior of three flies chasing each other. All the flies are controlled by the linear Di(i/>). The 
velocity is constant. This behavior is observed for a wide range of parameters (see later figures). The inset above 

the figure shows the error angle as a function of time. 
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Figure 10. Three flies chasing each other. All the flies are controlled by the linear A(V0 with nonlinear saturation 
of the total torque of each flv (see text). The velocity is constant. This apparently chaotic behavior is observed for 
small At (such as for instance At = .001). The inset above the figure shows the error angle of one of the fly relative 

to one of the other two as a function of time. 
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Figure 11. Three flies chasing each other using the nonlinear Dn(rl>). This particular behavior depends on a large 
At (here At = .05). The velocity is constant. The inset above the figure shows the error angle of one of the fly 

relative to one of the other two as a function of time. 
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Figure 12. Three flies, two of which are chasino- m« ^ u-i 
s;gn, see text). All the flles are ll^ÄÄ "T^ ^ W) appeU" ^ * ™^™ 
frequent and has been observed for a wlde Lg       AÄ JA "J^*"?- P* ^^ is the most 

™ angle of one of the chas.ng ffies ^J^^^^^^S^ *"" *" 
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